WLAN Tool Box for MATLAB Users: IEEE802.11ax

CommAccess LLC

November 2020

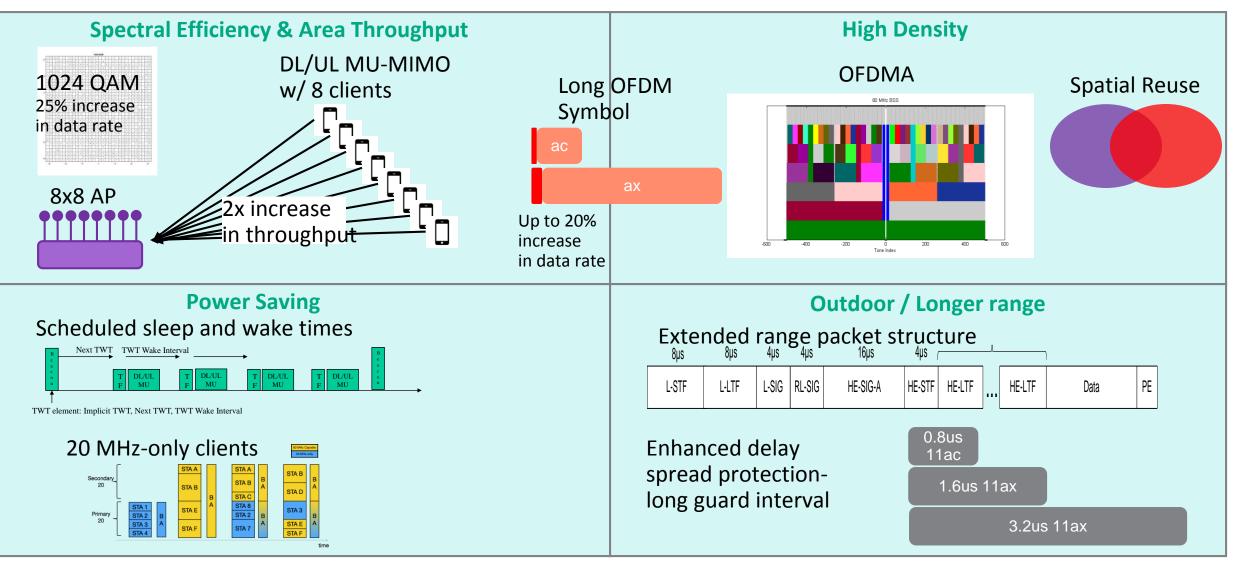
Outline

- Brief Review on IEEE 802.11ax (High Efficiency WLAN)
- Intro to <u>WLAN Tool Box for MATLAB Users</u>

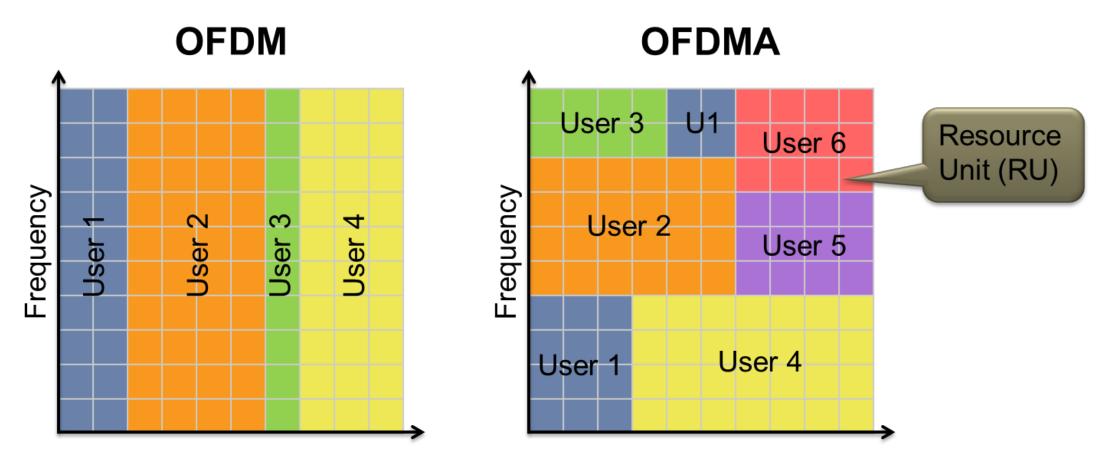
Wi-Fi is Emerging to 5G Wireless

 On 17 December 2019 the IEEE announced "IEEE P802.11ax meets or exceeds requirements specified by the International Telecommunications Union for the 5G <u>Indoor Hotspot and Dense</u> <u>Urban</u> test environments of the enhanced Mobile Broadband (eMBB) usage scenario. IEEE P802.11ax establishes a foundation for an advanced Wi-Fi technology capable of supporting 5G network performance."

Carrier Wi-Fi

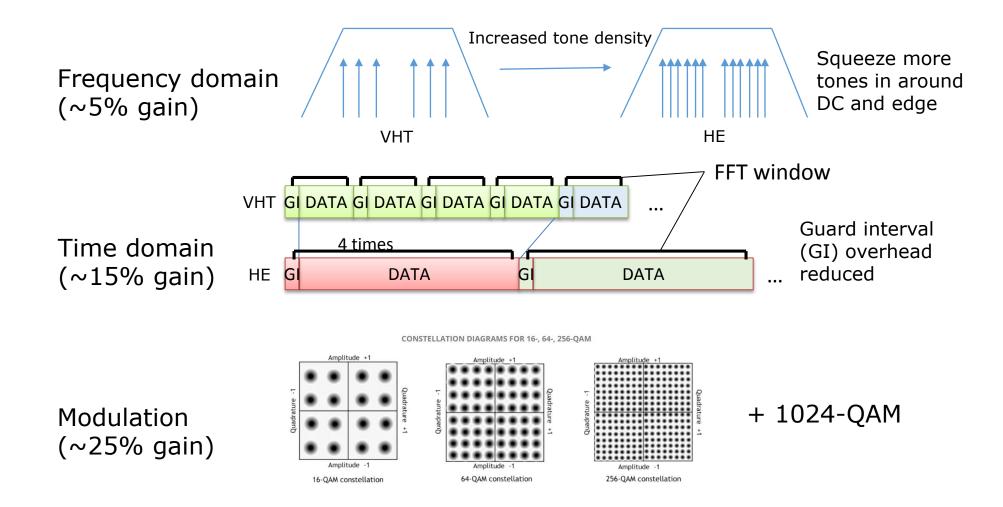

802.11ax is focused on improving performance in dense environments

- Existing 802.11 WLAN systems serve dense deployments: 2019 Super bowl: 24TB* of data carried on WLAN network
- 802.11ax aims to further improve performance of WLAN deployments in dense scenarios
 - Targeting at least 4x improvement in the per-STA throughput compared to 802.11n and 802.11ac.
 - Improved efficiency through spatial (MU MIMO) and frequency (OFDMA) multiplexing.
- Dense scenarios are characterized by large number of access points and large number of associated STAs deployed in geographical limited region
 - e.g. a stadium or an airport.



Access to Internet, latest airlines' announcements, and digital media such as movies and sport events

802.11ax Categories of Enhancements


OFDMA enables further AP customization of channel use to match client and traffic demands

Increased efficiency for (high percentage of traffic) short data frames

Source: IEEE 802.11 Public Doc [2]

802.11ax Increases link efficiency

UL OFDMA & UL MU-MIMO

Scheduled UL access for increased capacity and efficiency

Contention based resource allocation (11ac)

- Un coordinated resource management
- Devices all compete and try to get resource till they succeed
- · Works well in single AP scenario

Scheduling based resource allocation (11ax)

- Up link resource allocation managed by AP
- A must for dense scenarios
- Increased capacity and better user experience

19

Key PHY Features/Capabilities

- 8x8 MU-MIMO & OFDMA both UL/DL
- More Spatial Streams
- BSS Color to enable additional channel reuse
- Uplink resource scheduling (via Trigger Based PPDU)
- Higher order modulation for higher throughput (1024 QAM)
- Enhanced cyclic length for outdoor (longer range) applications
- Midamble for mobility

WLAN Tool Box or Work Bench

• Standard based waveform generation and receiver processing

✓ All preamble, signaling bits, modulation/coding, and the PPDU format are compliant with the standard

- Applications may include
 - ✓ To employ the generated 11ax waveform to assist the signal processing algorithm design and development taking into account of random arrival and CCA detection, frequency drift, and various channel models, etc.
 - ✓ To feed the generated 11ax waveform to assist receiver hardware (FPGA/ASIC) design and optimization
 - ✓ To measure the signal integrity of an 11ax waveform generated from any transmitting hardware such as FPGA

HE PPDU FORMATS [1]

Variable durations per HE-LTF symbol

_	8 µs	8 µs	4 µs	4 µs	8 µs	4 µs		_			
	L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF		HE-LTF	Data	PE

Figure 27-8—HE SU PPDU format

					4 µs per	Va	riable duratio	ns pe	r HE-LTF sym	lod	
8 µs	8 µs	4 µs	4 µs	8 µs	symbol	4 µs		_			
L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-SIG-B	HE-STF	HE-LTF]	HE-LTF	Data	PE

Figure 27-9—HE MU PPDU format

						V	/ariable durati	ons p	per HE-LTF sy	mbol	
_	8 µs	8 µs	4 µs	4 µs	16 µs	4 µs					
	L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF		HE-LTF	Data	PE

Figure 27-10—HE ER SU PPDU format

8 µs	8 µs	4 µs	4 µs	8 µs	8 µs		-	•	
L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF	 HE-LTF	Data	PE

Figure 27-11—HE TB PPDU format

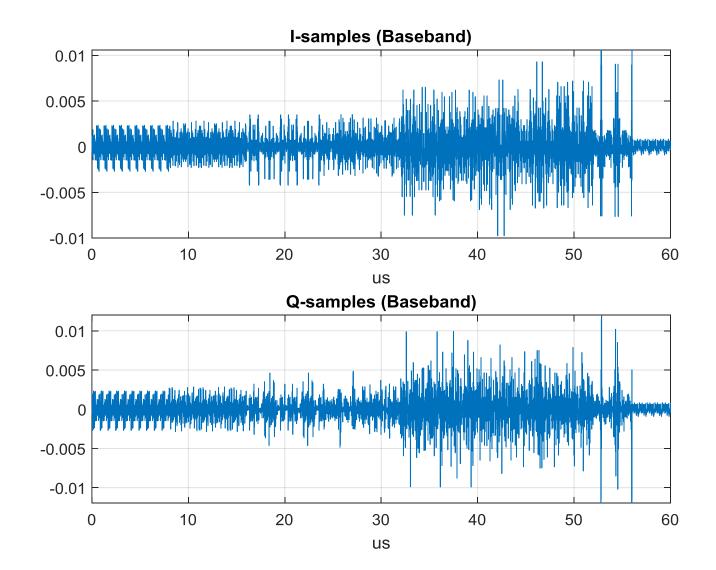
Example 1 from Annex Z [1]

An example of the HE-SIG-B field with resource allocation signaling for an 80 MHz HE MU PPDU is shown in Table Z-1.

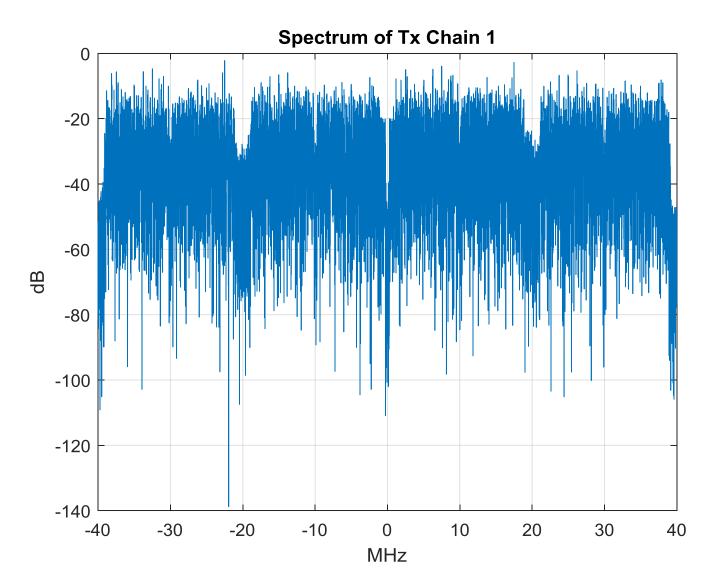
RU	484-tone RU 1	26-tone RU 19 (center 26-tone RU)	242-tone RU 3	242-tone RU 4		
SS0	STA-ID 1441, HE- MCS 10, LDPC	STA-ID 1443, HE- MCS 3, BCC, 1SS, no beam-	STA-ID 1444, HE- MCS 4, BCC, 2SS, Tx beam-	STA-ID 1445, HE- MCS 8, BCC		
SS1		forming, no DCM	forming	STA-ID 1446, HE- MCS 7, BCC		
SS2	STA-ID 1442, HE- MCS 9, LDPC		N/A	STA-ID 1447, HE- MCS 6, BCC		
SS3				STA-ID 1448, HE- MCS 5, BCC		

Table Z-1—Resource allocation signaling example 1

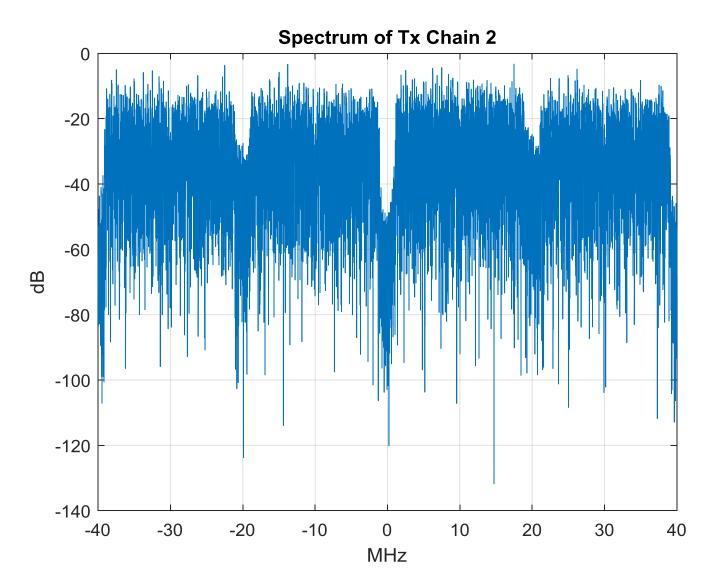
Example from Annex Z (HE-SIG-B Content) [1]


Table Z-2—HE-SIG-B content for example 1

	HE-S	SIG-B content channel 1	HE-SIG-B content channel 2				
Common field	10010011 00	000011 1 1111 000000	01001110 11000011 1 1100 000000				
User fields	STA 1441	10000101101 0010 0101 0 1	STA 1445	10100101101 0000 0001 0 0			
	STA 1442	01000101101 0010 1001 0 1	STA 1446	01100101101 0000 1110 0 0			
	CRC & tail	0011 000000	CRC & tail	1101 000000			
	STA 1444	00100101101 100 1 0010 0 0	STA 1447	11100101101 0000 0110 0 0			
	STA 1443	11000101101 000 0 1100 0 0	STA 1448	00010101101 0000 1010 0 0			
	CRC & tail	1000 000000	CRC & tail	1001 000000			
	Padding	0	Padding	0			
HE-SIG-B field content in hexa- decimal	0x9303F810	B49545A529804B648C5A18400	0x4EC3E014B40465A1C681CB41815A1448				


MAC Provided TXVECTOR as the PHY Input

Read Me: Wh	nen HE_SU	or HE_ER_	SU is speci	fied, RU is	ignored.										
FORMAT_HE 1 0=SU, 1=MU, 2=ER_SU, 3 =					J, 3 =TB										
CHBW	80		MHz												
				TXPW_	TXOP_										
	NO_SIG_			LEVEL_	DURATIO	SPATIAL_		HE_LTF_	BEAM_	BSS_	UPLINK_	MIDAMBLE_			
N_TX	EXTN	STBC	GI_TYPE	INDEX	Ν	REUSE	DOPPLER	TYPE	CHANGE	COLOR	FLAG	PERIODICITY			
1	1	0	1	0	0	0	0	1	1	1	1	0			
0	0	0	1	4	MU param	eters: A) S	GIG_B_COM	IPRESSION	_MODE, B)	MCS_SIGB	, C) DCM_	SIGB, D) CENTE	R_26_TON	E_RU, E) N	UM_HE_LTF
201	192	114	195					RU Alloca	tions (up to	o 8 RUs)					
0	0	0	0	0	0	0	0	INACTIVE	SUBCHANI	NELS from	the lowest	to the highes	t 20 MHZ (()=active, 1	=inactive)
								NORMAL							
								_	EXPANSI	YorN_MU					
			APEP_			DELTA_	BEAM-	PACKET_	ON_	_	Space-				
STA_ID	FEC	MCS	LENGTH	NUM_STS	DCM	SNR	FORMED	PADDING	MAT	MIMO	config				
1441	1	10	96	2	0	0	0	0	0	1	4				
1442	1	9	96	2	0	0	0	0	0	1	4				
1444	0	4	1024	2	0	0	1	0	0	0	0				
1443	0	3	100	1	0	0	0	0	0	0	0				
1445	0	8	600	1	0	0	0	0	0	1	0				
1446	0	7	1024	1	0	0	0	0	0	1	0				
1447	0	6	600	1	0	0	0	0	0	1	0				
1448	0	5	1024	1	0	0	0	0	0	1	0				
· · · · · · · · · · · · · · · · · · ·												-			


Generated I/Q Samples (Baseband)

Transmitted Spectrum (Tx 1)

Transmitted Spectrum (Tx 2)

TXVECTOR Input Display

```
The selected file name is User Data Input 80Ex1.csv
TXVECTOR input:
PPDU FORMAT= HE PPDU MU, Channel Bandwidth= 80
N TX=1, NO SIG EXTN=1, STBC=0, GI TYPE=1, TXPW LEVEL INDEX=0
TXOP_DURATION= 0, SPATIAL_REUSE= 0, DOPPLER= 0, HE_LTF_TYPE= 1
BEAM CHANGE=1, BSS COLOR=1, UPLINK FLAG=1, MIDAMBLE PERIODICITY=0
SIG-B Compression=0, SIGB-MCS=0, SIGB-DCM=0, NUM HE LTF=4
Center 26 Tone RU=1
****** MU-MIMO User Info from TxVECTOR ******
1441110 962000014
14421 9 962000014
14440 4 102420010000
14430 3 1001000000
14450 8 6001000010
14460 7 1024 10000010
14470 6 6001000010
14480 5 1024 10000010
```

Data Processing Validating TXVECTOR

----- RU Allocations ------CHBW= 80 MHz, Number of RUs = 5 RU tones: 484 242 26 484 242 RU index: 1 1 19 1 1 Number of Users per RU: 21104 RU power scaler: 1.000 1.000 1.000 0.000 1.000 N TX is updated to N STS Qk=4 from 1 Internal checking N SYM=18, a factor=1, LDPC EXTRA SYMBOL=0 L_preamble=20 us, HE_preamble=72 us SIGB CC1 9303F810B49545A529804B648C5A18400 SIGB CC2 4EC3E014B40465A1C681CB41815A14480

Parsed L-SIG and SIG-A at Rx End

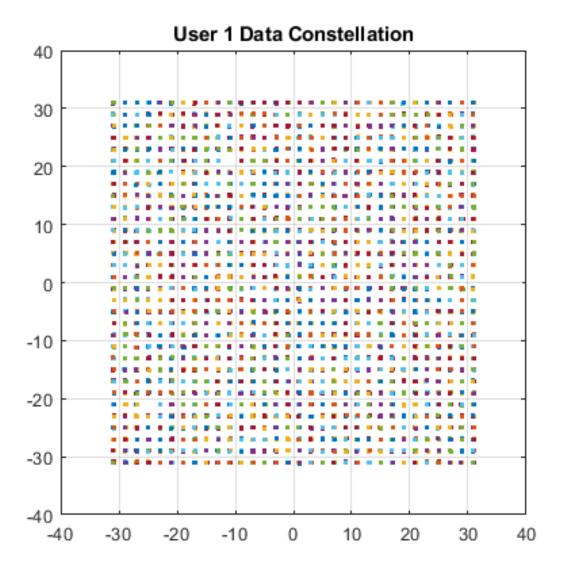
... Start processing Rx...

Receiving PPDU format: MU_MIMO...... Channel Bandwidth: 80 MHz

The Rx chain under examination = 1

Rx_wave power=4.20e-04, pwr_L-STF=9.07e-04, pwr_L-LTF1=9.07e-04, pwr_L-LTF2=9.07e-04

L-SIG: Rate mode= 6, LENGTH (from TXTime)= 245


SIGA of MU PPDU:

UPLINK_FLAG=1, HE_SIGB_MCS=0, HE_SIGB_DCM=0, BSS_Color=1, Spatial_Reuse=0 N_HE_SIGB_or_MU_MIMO=6, HE_SIGB_Compression=0, GI+LTF_TYPE=2, Doppler=0, TXOP=0 N_HE_LTF_SYM=4, Midamble=0, LDPC_EXTRA_SYMBOL=0, STBC=0, a_factor=1, PE_Disambiguity=0

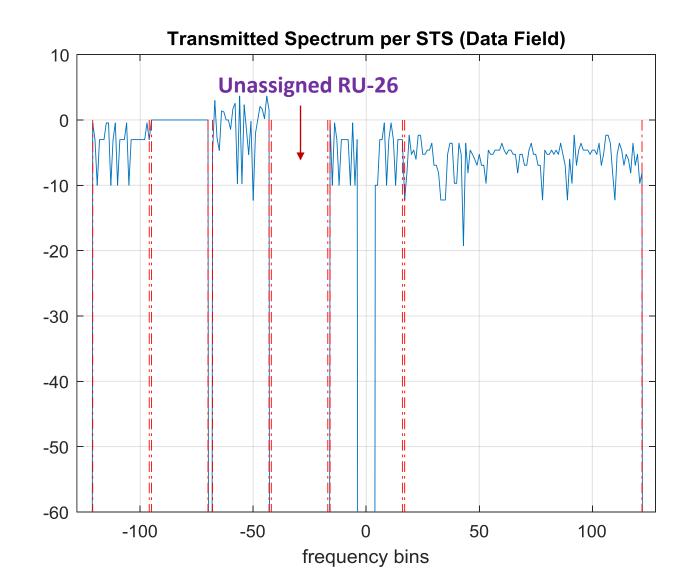
Parsed SIG-B Content Channels at Rx End

```
Decoded SIGB on CC 1
9303F810B49545A529804B648C5A18400000000
SIGB decoded user info on Content Channel 1
STA ID, N SS, Beamformed, HE-MCS, DCM, Coding, SpatialConfig, MU-MIMO or not,
RUtone user, RU index, CCn, not used
1441 0 0 10 0 1 4 1 484 1 1 0
1442 0 0 9 0 1 4 1 484 1 1 0
1444 2 1 4 0 0 0 0 242 1 3 0
1443 1 0 3 0 0 0 0 26 5 1 0
Decoded SIGB on CC 2
4EC3E014B40465A1C681CB41815A14480000000
SIGB decoded user info on Content Channel 2
STA_ID, N_SS, Beamformed, HE-MCS, DCM, Coding, SpatialConfig, MU-MIMO or not,
RUtone user, RU index, CCn, not used
1445 0 0 8 0 0 0 1 242 1 4 0
1446 0 0 7 0 0 0 1 242 1 4 0
1447 0 0 6 0 0 0 1 242 1
                               4 0
1448
     0 0 5 0 0 0
                     1 242 1
                               4
                                 0
```

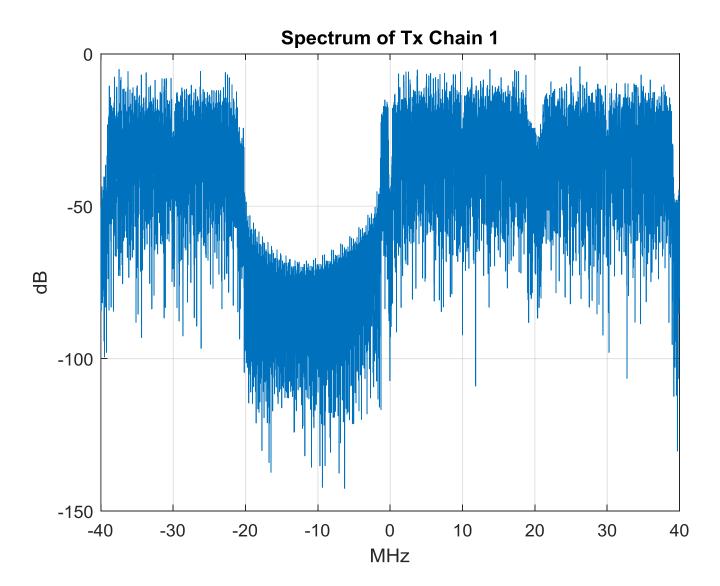
Demodulated Output (1024 QAM)

End-to-end processing per Intended User

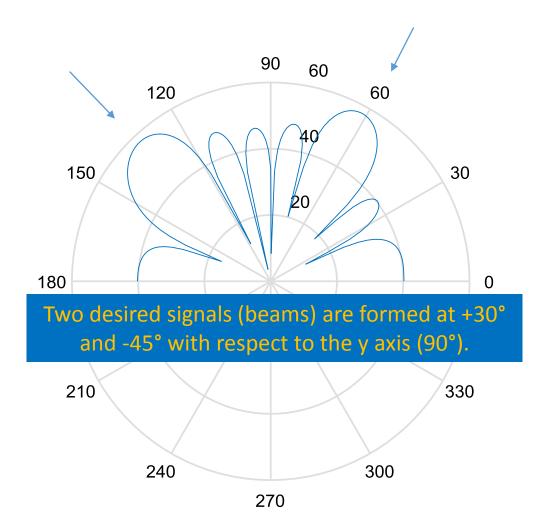
The STA ID LIST in this received PPDU is as follows: 1441 1442 1444 1443 1445 1446 1447 1448 Enter your STA ID to receive data: 1441



```
Selected STA-ID= 1441 -> iU= 1, iTx= 1, iRU=1, RU size = 484, N_STS_total_r=4
HE-MCS= 10, MU-MIMO or non-MU-MIMO= 1 (1=yes)
Kr= 484, Kr HE STF= 30, N STS total r= 4
GI+HE LTF TYPE= 2 (from SIGA), GI time= 1.6us, HE LTF SYM time (including GI)= 8.0us
N_SYM= 18, LDPC_EXTRA_SYMBOL= 0
--> Demodulating & plotting...
Data Tones for iUser=1, from kTx=1, iRU=1, kpn=10:
Data subcarriers from -500 to -17 with size 468
HE-MC<u>S= 10, # bits/carrier =10, DCM</u>= 0, STBC= 0, FEC= 1, CodeRate= 0.75
The rms Vector Error Measurement of the received subcarrier samples (data field) = 0.071 or -22.9 dB
pw_scale_LLTF1=0.030, pw_scale_DataSymbols = 0.264, pw_HE_STF = 0.254
                                                                                       Fine AGC
--> Decoding ...
Calling decoding LDPC 11ax:
LDPC EXTRA SYMBOL=0, N pld=121140, N avbits=161520
LDPC decoding: Npld= 121140, N_avbits= 161520
 L LDPC= 1944, N CW= 84, N shrt= 1332, N pucn= 444, N rep= 0, CodeRate Data=0.750
```


End-to-end processing to decoded bits (BCC or LDPC)

--> Decoding ...


Example of Unassigned RU in a 20 MHz Width

Example of Punctured 20 MHz in 80 MHz Width

Antenna Beam Formed in an 8-element Linear Antenna

References

- 1) IEEE P802.11ax[™]/D6.0, January 2020
- 2) IEEE 802-11-Overview-and-Amendments-Under-Development, October 2019
- 3) 802-11ax-transforming-wi-fi-to-bring-unprecedented-capacityefficiency, Qualcomm download

Thank You for your attention!

• Please send an email to https://www.howard@commaccess.com should you have any question or inquiry.

